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The paper is the second part of a study of the failure of the insulation of a layer of 
dielectric fluid of arbitrary volume, occupying a hole in a solid dielectric sheet, 
when stressed by an applied electric field. In part 1 symmetric and asymmetric 
equilibria were found for the two-dimensional problem, using an approximation 
given by Taylor (1968) for the electric field, which is valid for large holes. In  this 
paper axisymmetric equilibria are given for a circular hole, under the same condi- 
tions. In  addition the points of bifurcation of asymmetric solutions have been 
found, and provide sufficient information to give the stability characteristics. It 
is found that when the volume-excess fraction 6 exceeds a value of approximately 
- 0.3 instability occurs in an asymmetric form reported earlier for large holes 
by Michael, O’Neill & Zuercher (1971) in the case 6 = 0. For 6 < - 0-3 the nature 
of the instability changes to an axisymmetric form of failure associated with a 
maximum of the loading parameter. 

The analysis given shows that axisymmetric displacements of ‘sausage ’ mode 
type, that is, symmetric about a centre-plane, are associated with small changes 
in the static pressure in the dielectric layer. Such modes have not previously been 
examined in this context, and in an appendix to this paper Michael & O’Neill 
give an analysis of them when b = 0, valid for all hole sizes, by extending the small 
perturbation analysis of Michael, O’Neill & Zuercher. These modes however do 
not provide the most unstable displacements for any configuration, and do not 
therefore affect the stability from a physical point of view. 

1. Introduction 
This paper is a sequel to a paper by Michael, Norbury & O’Neill (1974, called 

part 1). The work arises from an earlier study made by Michael, O’Neill & 
Zuercher (1971), hereafter referred to as MONZ, of the failure of the insulation of 
a dielectric fluid filling a circular hole in a solid dielectric sheet when the fluid is 
stressed by an electric field. In  part 1 the authors initiated a discussion of the 
problem when such a hole is partially filled, and it was shown that for wide holes 
a formulation similar to that given by Taylor (1968) could be used. Some con- 
sequences of the analysis for a circular hole were given in the introduction of 
part 1, but detailed discussion and results were there given for the two-dimen- 
sional plane problem only. The purpose of the present paper is therefore to give 
an account of the results which have been obtained for the instability of a 
partially filled circular hole. 
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It will be assumed here that the reader is familiar with the notation and the 
formulation of the problem given in the introduction of part 1. The central 
problem which is posed for a circular hole is to solve the boundary-value problem 

Y(X,@ B 0, p 2 0, J 
with the condition y = 1 a t  x = 1 (0 < 8 < 2n), and to obtain the loci in the a, B 
plane for which the solutions give a prescribed value for the volume excess 6. 

When 6 = 0 there exists the axisymmetric solution y E I, for which a +P = 0,  
and the stability of this equilibrium was the subject of analysis in MONZ. It was 
shown there that for wide holes the instability of primary interest, that is, the 
instability appearing at the lowest level of the applied electric field, is an asym- 
metric ‘sausage’ mode. This suggests that, for given 6 $. 0,  we should study first 
of all the axisymmetric solutions of (1). Second, we need to ascertain points of 
bifurcation of the axisymmetric solutions into asymmetric solutions. We begin 
with a discussion of the axisymmetric solutions. 

2. Axisymmetric solutions 
For these solutions the boundary-value problem (1) is reduced to 

d2y -+-- Idy =a+- P (0  6 x < l), 
dx2 xdx Y2 

y = l  at x = l .  

Also, for smooth solutions in this case, dyldx = 0 at x = 0. 

satisfies the volume constraint equation 
We require values of a and /3 for which this problem has a solution which 

2n/01&-n = 6, (3) 

where 6 is initially prescribed. 
Solutions of (2) were given by Taylor (1968) and Ackerberg (1969), for pre- 

scribed values of a. If yo is the value of y at  the centre x = 0, such solutions plotted 
in the yo, p plane are typically as shown in figure 1, each point of a curve repre- 
senting a solution of (2) for a prescribed value of a. 

Starting with p = 0, a stable equilibrium may be followed up each curve as the 
applied field strength is increased until the first maximum of the curve is reached; 
this represents the value of /3 at which the equilibrium becomes unstable. It can 
be seen that these curves subsequently develop an infinite number of oscillations 
as they approach a limit point /3 = Po as yo+ 0. In the case when a = 0 this process 
was described in detail by Ackerberg, using a phase-plane transformation in 
which it was shown that this limit point is a spiral point. Unfortunately there 
appears to be no similar extension of this analysis when a =+ 0. However, we are 
able to find the limiting value I,, for any value of a. Solutions with /3 = p,, have a 
cuspidal behaviour at x = 0. 
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Yo 

FIGURE 1. The loci of axisymmetric equilibrium solutions at constant a, after Taylor 
(1968) and Ackerberg (1969). 0,  limiting cuspidal spiral-point solution as yo --f 0. 

When a = 0 Ackerberg gave the value Po = $. This can be verified by looking 
for a solution of (2) when a = 0 of the form y = Axk. It follows by substitution 
that k = Q and h3 = $/3. Hence, with y = 1 at x = 1, we require Po = $, and the 
limiting solution is then y = x3. 

When a + 0 the cuspidal form of the solution at x = 0 will not be affected since 
as y+ 0, ay2//3-+0. Hence we write y = uxfx(x) ,  where z(0) 9 0. Substitution into 
(2) shows easily that when a is chosen to make z(0)  = 1, u3 = g,!? and z(x)  satisfies 
the equation 2 (s*i2+7x") +z--  22 = - p "(9/3)+,%. 4 

4 3 ax 

A solution in powers of x* is appropriate. If we write C; = (alp) (:/3)8& the 
boundary-value problem becomes 

with z = 1 at C; = 0 and x = (4/9/3)f at C; = a/P(fp)j.  
A power-series solution of (4) appropriate for small C; has the form 

p+ ... . f %  10 
2 = 1+-+-- 

11 1089 1 5 3 ~ 1 . 1 ~  
7 F L M  72 
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FIGURE 2. The locus of spiral-point solutions in the a, /l plane. 

This power series was used to initiate a numerical solution of (4) for larger values 
of 6. It follows that, by assigning a value p = Po a t  the limit point, the corre- 
sponding value of a is obtained from the solution of (4) by finding the value of 
C; = a//30(&80)Q at which x = (4/9p0)+. We are thus able to obtain the locus of 
these limit points in the a, /3 plane. It will be clear from the discussions in part 1 
that we are interested in correlating these solutions with the volume excess 6. In  
terms of <, 

where Jc = a/P($P)f. This formula enables us to calculate 6 at each limit point in 
the a, p plane. Figure 2 gives the locus of these cuspidal limit-point solutions with 
typical values of 6 shown. It is interesting to note that cusps of this form cannot 
occur in axisymmetric solutions, for k i t e  p, except at the centre x = 0. Any such 
solution with a cusp occurring a t  x = xo (0 < xo < 1) will be a ring cusp, and 
will be governed by the equation 

-+-- 1 dY =-  P d2Y 
dy2 xod7 Y2 

as y -f 0, when x = xo +q. With d2y/d72 the dominant term on the left-hand side, 
the solution must take the limiting form y = - (&'3)Jq* as 7 +0,  which is 
inadmissible since y < 0. 

It was shown in part I that, when ,8+ 0, piecewise smooth solutions, in which 
dyldx changes sign at the points where y = 0, can be found in the two-dimensional 
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problem. Similar solutions occur in the axisymmetric problem as , 830 .  For 
example a solution smooth at  x = 0 with y = 0 at x = xo is given by 

= { L ( X 2  -x%) (0 < x < XO), 
1+~a(x2-l)-[l+*a(X~-l)]logx/logxo (xo < x < 1). 

To specify the connexion between a and xo, it can easily be seen that the slopes 
of the two branches at  x = xo must be equal and opposite. This is the same condi- 
tion as that applying in part 1, and indicates that such 'corner' solutions are 
locally two-dimensional near y = 0. 

A feature of the axisymmetric solutions which helps in the understanding of 
the results is that smooth profiles cannot change from having a maximum to 
having a minimum of y at x = 0, or vice versa. For, if such a transition were to 
take place, dyldx = 0 and d2y/dx2 = 0 at x = 0,  and solutions of (2) for small x 
would be of the form y = ao+a,x4 +a,x6 + ... . Substitution into (2) shows that 
a, = a, = a, = . . . = 0. Hence the only solution satisfying the condition is y = 1, 
occurring as part of the 6 = 0 locus. Thus the loci of solutions, for given 6 += 0, 
must divide into two unconnected sections with a maximum and a minimum in 
the profile at x = 0,  respectively. 

Another feature of interest in axisymmetric solutions is that no bifurcation of 
a locus for prescribed 6 $. 0 in the a, P plane will occur. For, suppose such a bifur- 
cation were to occur at a point (ao,Po) where the solution is y = fo(x). Hence 

where dfo/dx = 0 at x = 0,  fo = 1 at x = 1 and 

has a prescribed value. If y = fo + fi, a = a. + al, P = Po +P1 is a perturbation in 
which quantities with a suffix 1 denote first-order changes, then 

with dfl/dx = 0 at x = 0,  fl = 0 at x = 1 and 
n, 

Jo'Xf1dX = 0. 

At a point of bifurcation there will be two solutions fll and fiz satisfying these 
perturbation conditions with perturbations in (a, p) given by (al1, PI1) and 
(al2, P12) respectively. In  such a case it would follow, by taking a linear combina- 
tion pfll + afi2 of fll and fi2, that a perturbation a? = pall + p12,P? = p,811+ qP12 
in any direction would be attainable. Thus uniquely defined bifurcations cannot 
exist, with the one exception of when S = 0, fo(x) 3 1 and a. + Po = 0. In  this case 
one of the perturbations is along the straight line u+P = 0, and for this-the 
perturbation equation has solution fll E 0, with a l ,+~l l  = 0. Thus uniquely 
defined bifurcations from the line a +p = 0 can and do occur on the S = 0 locus. 

7-2 
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FIGURE 3. The first branch of the locus of symmetric equilibria, in the a, B plane for 
6 = - 0.2. A is the initial unstressed state. B is the point of asymmetric bifurcation. C is 
the spiral-point limit. The 6 = 0 line, ct+p = 0, is marked dashed for comparison. 

Our final remarks on the axisymmetric solutions concern the numerical com- 
putation. For this purpose it is convenient to scale out the parameter a from (2). 
Since negative values of a are of most interest, for a < 0 we write x’ = ( -a)+ x, 
and write (2) as 

- - + - - = - 1 + -  d2y 1 dy Y 
dxta x’dx’ Ya’ 

where y = -@/a > 0. The boundary conditions are then dyldx’ = 0 at  x‘ = 0 
and y = 1 at x‘ = ( -a)&. The method of computation was to assign a value of y 
and to compute the solution of (5) with dy/dx‘ = 0 and y = yo at x = 0, where yo 
takes on consecutively a range of positive values. The value of a is then found by 
finding the value of x’ = ( - a)* a t  which y = 1. The value of /3 then follows since 
/3 = -ay. For each such solution the value of 6 is obtained by numerical 
integration from the formula 

6 = 277 x(y-1)dx = -22na x’(y- 1)dx’. C 
The program is then arranged to search for solutions which have a prescribed 
value of 6. Loci of symmetric solutions were obtained in this way for 6 = - @2,0 
and + 0.2, and the branches which are of most interest are shown in figures 3-5. 
These results confirm the properties of the solutions mentioned above. Only in 
the case 6 = 0 is there a bifurcation of the symmetric loci. The property that, 
centre-up solutions are unconnected with centre-down solutions is illustrated by 
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-a 

FIGTJRE 4. The locus of symmetric equilibria in the a, B plane for 8 = 0. A is the initial 
unstressed state. B is the first point of asymmetric bifurcation. G is the spiral-point limit. 
D is the fist symmetric bifurcation point from the line a+P = 0. 
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FIGURE 5 .  The f i s t  branch of the locus of symmetric equilibria in the a, p plane for 
8 = + 0.2. A is the initial unstressed state. B is the point of asymmetric bifurcation. C is 
the spiral point, which is an end point of another branch of the locus (not given) un- 
connected with the initial state A. 
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the difference in behaviour for 6 > 0 and 6 < 0. For 6 < 0 the first loop of the 
locus, beginning with the unstressed state A ,  which is a centre-down profile, ends 
on the spiral point of the cuspidal solution. For 6 > 0 the initial state A has a 
centre-up profile, and is unconnected with the spiral point. In this case the spiral 
point is an end point of a separate locus of centre-down solutions. But since this 
has no bearing on the instability criteria, it  was not thought worthwhile to follow 
this locus for S > 0. 

3. Asymmetric solutions 
It was pointed out in part 1 that the analysis of MONZ for large holes, in the 

case 6 = 0, shows that instability first occurs in non-axisymmetric modes. For 
this reason i t  is important to obtain some knowledge of the non-axisymmetric 
solutions of the boundary-value problem (1). However, solutions of (I) are diffi- 
cult to obtain analytically, and numerical solutions which are not axisymmetric 
are also difficult to obtain because of the non-uniqueness of the solutions of ( 1 )  for 
given a and P. We have therefore endeavoured to determine those features of the 
asymmetric solutions which are of principal interest and which, as we shall show, 
are obtainable from the solution of a well-posed numerical problem requiring 
only a small amount of additional computation. 

It can be seen, by analogy with the two-dimensional analysis of part 1, that the 
most important points to obtain in the a, p plane are the first points of bifurcation 
of asymmetric solution loci from symmetric solution loci for given S. The latter 
having already been obtained, a limited test program can be devised to identify 
these bifurcations. 

Let y =fo(x) be a smooth axisymmetric solution of (1) at  (a,,Po), satisfying 
the equation 

dZfo 1 dfo P O  -+--=a,+, 
dx2 xdx f 0  

and the boundary conditions fo(l) = 1 and dfo/dx = 0 at  x = 0. To obtain 
asymmetric bifurcations, consider a small smooth perturbation in which 

y = f o ( 4  +f& fa, a = %+a,, p = PO+PI, 
where, again, quantities with a suffix 1 are small first-order perturbations. 
Substitution in (1)  shows that 

and that fi = 0 a t  x = 1 (0 6 r9 < 27r). Solutions of (6) may be written as 
fl(x, 0) = g,(x) + h,(x, 6) in which g,(x) is a particular integral satisfying the 
equation 

and h,(x, 8) is a complementary function for which 
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Single-valued solutions of (8) can be written in terms of the Fourier constituents 

kl1Jx) COsmO, where rn is an integer. The bifurcation of principal interest occurs 

when m = 1. Thus we write 

sin 

sin fl(% 0) = 9l@) + k l l ( 4  cos 0, 

in which gl( 1) = 0 and kll( 1) = 0. The requirement that g,(x) shall be smooth at 
x = 0,  together with the condition gl(i) = 0, determines the solution of (7) for 
g,(x), in terms of a, and ,8,. The further requirement that the volume of fluid 
occupying the hole is unchanged in the perturbation applies to the solution g,(x) 
since the second term off, does not contribute to any change in volume. It is not 
necessary to pursue this condition further, but it will evidently give rise to a con- 
nexion between g and Pl. This however is simply the continuation of the locus 
of axisymmetric solutions. Of more interest here is the second term off,, repre- 
senting a bifurcation away from the symmetric locus. In  this term k,,(x) clearly 
must satisfy the equation 

with kll( 1) = 0 and kll(x) regular at x = 0. Now fo(x) is an even function of x 
which is regular a t  x = 0 andfo(0) =i= 0. Hence the last term on the left-hand side 
of (9) does not contribute to the singularity of the equation at x = 0. The solution 
regular at x = 0 is thus of the form kl1 = x +a3 xs + a5 x5 + . . . . The satisfaction of 
the boundary-value problem (9), by kll(x), provides a simple test for the first 
asymmetric bifurcation. This test can be incorporated conveniently into the 
program for finding the symmetric solution loci in the a, ,6 plane for prescribed 6. 
Having established a point on the locus the appropriate value of Po and the profile 
fo(x) can be put into (9) and a numerical integration of the equation forward t o  
x = 1 establishes the value of kl1( 1). The first bifurcation point occurs where 
kll( 1 j first becomes zero. In  figures 3-5, the points labelled B show this bifurca- 
tion point for the values 6 = - 0.2, 0 and + 0-2. 

Without recourse to much more extensive computation we are unable to 
obtain the loci of asymmetric solutions as we were able to do in part 1. But some 
features of these solutions may be deduced. One can, for example, following 
part 1, look for asymmetrio solutions as ,8-+ 0 having profiles in which y(x, @) is 
singular where y becomes zero. Such a solution will satisfy the equation 

except at the singular points, where y = 0 with y = 1 at x = 1 (0 < t? < 2n). The 
solution of (10) is y = %ax2 + y”(x, O), where y”(x, 0 )  is a harmonic function. If it is 
assumed that there is one isolated point (xo, 0,) at which y = 0, we require that 
y” = 1 -$a, a constant, on x = 1 (0 < 0 < 2n) and y” = -&xi a t  (xo,O0). The 
solution for y” is y” = i - $a at all points except the singular point, where y = - $ax$. 
Such a discontinuous limiting solution could not be achieved as the limiting form 
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of a continuous profile, and we conclude that the asymmetric loci of constant 8 
will not approach the axis p = 0 in this way. Similar conclusions clearly follow 
when there are a finite number of isolated singular points of this kind. However, 
the case in which y-f 0 as /3+ 0 at all points of a closed curve I’ within the domain 
0 < x < 1 (0 6 0 < 2n) is different. Here the condition on ij is that y” = - )ax2 at 
each point of I?. Solutions interior to I?, and in the part of the domain between 
I’ and the exterior boundary x = 1 are then obtainable. Such solutions, repre- 
senting asymmetric forms of the symmetric ‘corner ’ type solutions discussed 
earlier, provide a limit by which asymmetric solution loci may descend to the 
axis /3 = 0. 

Finally it is natural to inquire whether spiral points can appear in the asym- 
metric solution loci. These would be associated with off-centre cusp profiles. For 
such a limiting solution with a cusp a t  x = xo ( + 0) it may be expected that the 
solution in the immediate neighbourhood of the cusp will become axisymmetric. 
Thus if p is the radius from the cusp point the local behaviour will be governed 
by the equation 

as y 3 0, with the known cusp singularity for which y -+ (&3)*pP” as p -f 0. To find 
such limiting solutions i t  is then necessary to solve the boundary-value problem 
given by (l), with this singularity at the cusp point. This again requires extensive 
computation, and since it is not necessary to know these limits to establish the 
stability of the system from a physical point of view, we have not deemed it 
worthwhile to pursue them further. 

4. Bifurcations of the 6 = 0 locus 
The bifurcations occurring when 6 = 0 me worthy of special mention for several 

reasons. They can be directly correlated with the stability results given in MONZ 
and they can be given explicit mathematical forms, Furthermore this is the only 
case in which bifurcation from a symmetric locus occurs. 

The equilibrium of the fully filled hole is given here by the line 01 +,8 = 0 in the 
a, ,8 plane, for which y(x) E 1, and the instability considered in MONZ is repre- 
sented here, for large holes, by the bifurcations from this line. To consider these 
bifurcations we write 

y = 1+c1+C2+ ..., cc = cc,+a,+cc,+... and B = p,+/3,~,+/3~+ ..., 
in which suffixes 1, 2, 3, . . . denote first-, second- and third-order perturbations, 
etc., from the solution y = 1, a, +Po = 0. The first-order equation for cl becomes 

where m2 = 2& The solution of (11) is required subject to the conditions g, = 0 
on z = 1 (0 < 8 < 2n) and 
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this latter equation being the condition of volume conservation. The solution is 
evidently of the form c, = (a, +/3,)/m2 + CT, where c: is a complementary func- 
tion. The first bifurcation occurring is associated with the asymmetric mode in 

which C i  cc cos 6, in which case we have sin 

where A, is a first-order constant and J, is a Bessel function. Here the volume 
conservation requires that a,+&!, = 0, and the remaining condition requires 
J,(m) = 0. The first root of this equation is m = 3.832, giving pa = -aa = 7.35. 
The structure of the higher-order terms in this bifurcation is the same as in the 
two-dimensional case of part 1, and will not be given in detail. At second order 
we find that a, = = 0 necessarily, and that the first perturbations of a, and Po 
are a2 and p2. Second-order analysis establishes the value of a2 +p2 in terms of A:, 
and it requires a third-order analysis to give a2 and p2 separately. This form of 
result demonstrates the one-sided nature of this bifurcation. The critical values 
of a, and Po, given by the point B in figure 4, correspond to those given in MONZ 
for large circular holes. The next bifurcation from the solution y = 1 is the first 
axisymmetric mode in which 

Q = (~1+P1)lm2+A1Jo(mx). 

With Cl = 0 at x = 1 we have 

The volume condition, Io1x5dx = 0, 

then gives d , ( m )  = 24(m). The lowest root of this equation is m = 5-1 approxi- 
mately, and Po = - a, = 13-2. This is the point D in figure 4. The first appearance 
of an axisymmetric bifurcation of this kind is not practically significant as it 
comes at a value of /3 greater than the value at which the first instability occurs. 
But the appearance of such modes here provides a better understanding of their 
place in the theory. MONZ considered axisymmetric modes under the condition 
of constant internal pressure, in which case the axisymmetric sausage mode does 
not exist. Here we see that such modes can appear with suitable perturbations of 
the internal static pressure, represented in this theory by an increment 6a in a. 
The present analysis is appropriate to large holes only, but the method of analysis 
given in MONZ can be adapted to consider these pressure-varying axisymmetric 
sausage modes for all hole sizes, when 6 = 0. An account of this has been given 
by Michael & O’Neill, and appears as an appendix to this paper. 

5. Conclusion 
The authors have been able to obtain numerically the loci of axisymmetric 

solutions at prescribed values of 6. Typical results are shown in figures 3,4 and 5 
for the values 8 = - 0 2 , O  and + 0.2 respectively. In each case the point A is the 
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FIGURE 6. The value P = p* at the first instability, for varying 8. P,,, denotes the value of 
P at the first maximum of the symmetric loci in the a, P plane. Pblf denotes the value of P 
at  the first asymmetric bifurcation. The critical value @* = b,- for S < -0.3 approxi- 
mately, and p* = Pbif for 6 > -0.3. 

equilibrium position before application of the electric field. For 6 < 0 the first 
branch, starting at A ,  is a centre-down branch which goes into the spiral point C 
representing the centred cusp limit, as shown in figure 3. For S > 0 (figure 5),  the 
branch starting from A is a centre-up branch, and cannot connect with the spiral 
point C. In  the marginal case 6 = 0, figure 4 shows the f i s t  symmetric bifurcation 
point D on the straight-line locus AE. Below D the bifurcated solution is a centre- 
down locus terminating a t  the cusp C. Above D the bifurcation is a centre-up 
solution. This locus recrosses the line AE but the solution is distinct from y = 1, 
and the point is not a point of bifurcation. For the purpose of correlating figure 4 
with figures 3 and 5 the branches AD and DE of figure 4 may be thought of as 
either centre-up or centre-down solutions. To correlate with figure 3, AD is 
centre-down and DE is centre-up, and vice versa for figure 5. 

The most useful information to obtain from this analysis is the critical value 
/? = p* a t  which the equilibrium will first become unstable, as a function of 6. 
The calculation of this follows the pattern of the two-dimensional case in part 1. 
It normally occurs at  the first asymmetric bifurcation point B. However as 6 
decreases we find, as in part 1, that B reaches the maximum of /? on the first 
branch a t  6 = - 0.3 approximately. For lower values of 6 the maximum of /3 is 
reached before the point B. Thus for 6 > - 0.3 the instability is an asymmetric 
one of the type observed in the experiments of Zuercher when S = 0. For 6 < - 0.3 
the instability becomes an axisymmetric one a t  the point of maximum p. The 
values of /3* have been calculated for a range of values of 8, and are shown in 
figure 6. 
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Appendix. Axisymmetric sausage mode instability when 6 = 0 
By D. H. MICHAEL and M. E. O’NEILL 

The analysis given in MONZ proceeded on the assumption that small perturba- 
tions in the electric stress and surface-tension stress are exactly in balance at  the 
point of instability, which leads to the conclusion that an axisymmetric sausage 
mode of instability cannot occur without violating the volume conservation 
requirement of incompressibility. It furthermore implies that it is not possible 
for the dielectric fluid to have an equilibrium profile shape which corresponds to 
an axisymmetric sausage mode of displacement. However, the foregoing dis- 
cussion suggests that such modes are associated with changes in the internal 
static pressure, and this has prompted us to consider the problem again when 
a change in pressure is allowed to occur in the displacement of the system. 

As in MONZ, we present two theoretical models for the perturbation of the 
system. The first is a simple approximate theory which ignores any coupling of 
the perturbation electric fields in the solid and liquid dielectrics. This, however, 
leads to discontinuities in both the perturbation potential and the normal com- 
ponent of the displacement vector across the wall r = R although of small order 
of magnitude. The second theoretical model is exact and takes into account the 
coupling of the fields in the two dielectric phases. 

Approximate and exact models for the perturbation 
When a change in the static pressure difference across the interfaces is allowed, 
an axisymmetric sausage mode displacement can be constructed in the following 
way. Using the configuration and notation given previously in MONZ, we con- 
sider a sausage mode of displacement in which the surface elevation of the 
interface z = h (0 < r < R) is given by 

This form of displacement satisfies the condition that 5 = 0 a t  r = R, and, in order 
to satisfy the volume conservation condition, it is necessary that 

6 = Jo(kr) - Jo(ICB). 

JOBr5dr = s,” r[Jo(kr) - Jo(kR)] dr = 0. 

This imposes a condition on the wavenumber k such that 
SJ,(kR) - kRJo(kR) = 0. 

From Abramovitz & Stegun (1965, p. 414), the smallest value of k satisfying this 
equation occurs when ICR M 5.136. 

Corresponding to this form for 5 the perturbation electrostatic potential x for 
a sausage mode has the form 
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This satisfies Laplace’s equation within the dielectric fluid and the surface 
condition that x = T EoC at z = k h respectively. On the surface, which in the 
unperturbed state is z = h, the total stress is 

(KEi/4mh) {kh coth khJo(kr) - Jo(kR)) (A 2) 
to first order. The constant term in (A 2 )  arises from the second term of (A 1). 

to give rise to the dispersion relation 
In the marginal state the first term in (A 2) balances the surface-tension stress 

KEi h / h T  = kh tanh kh, (A 3) 
which is the same as that given previously for the sausage modes considered 
in MONZ. The second term of (A 2) shows that such a mode of disturbance must 
be accompanied by a small first-order increase 8p in the static pressure inside 
the dielectric fluid. This will be given by 

&I = ( - KEg/4?~h) Jo( kR) . 
Substitution of the value kR = 5.136 into (3) gives a higher value of the applied 

field Eo for instability of this mode than is necessary for the 81  mode given 
previously in MONZ, for which kR N“ 3,832. Thus the instability of the axi- 
symmetric sausage mode should not enter the correlation of theoretical and 
experimental results for the critical voltage. 

However, in this simple model for the perturbation, we have ignored any 
change in the electric field inside the solid dielectric; we note that x + 0 and 
ax/i3r + 0 for all IzI < h along r = R. Thus there is a discontinuity a t  the wall 
r = R in both the perturbation electrostatic potential and the displacement 
vector, the latter discontinuity implying that there is a layer of free charge 
between the solid and liquid dielectrics, which, as was pointed out in MONZ, did 
not occur in Zuercher’s experiments. 

It therefore remains for us to examine how far the conclusions which may be 
drawn using the simple model present an accurate description of the most 
unstable modes and, to do this, we present an exact theory which takes into 
account the coupling of the electric fields within the two dielectric phases. We 
shall assume that the dielectric constants K for both the solid and liquid dielectric 
are equal as this case closely matches the situation in the experiments described 
in MONZ. 

For an axisymmetric sausage mode, we write, following the notation of MONZ, 
m 

where the aoi denote the roots of Jo(ao,R) = 0. The condition of constancy of 
volume requires that 

A suitable representation of x within the strip 1x1 < h, 0 

(A 4) 

< r < 00 is given by 
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The boundary condition on x requires that x = T E,g for 0 < r < R and x = 0 
forr  =- R w h e n z = k h .  

Thus W 

t = 1  

PO' = -- a'' Jo( kB) J1( aoi R )  . 
k2 - a& where 

Consequently, 
sinhkx 

x = - E O  j,, I%- sinhkhi=l x 6 " p Oi (k)J'(Wdk.  

The surface stress condition, when allowance is made for a small increase Sp in 
the pressure within the dielectric fluid over that of the conducting fluids, now 
takes the form 

when r < R. We can express each of the terms of (A5) as a series involving the 
complete set of orthogonal functions Jo(aoir) (i = 1,2, . . .). 

Therefore we have 

and noting that, for 0 < r < R, 
2 ~ o j J o ( ~ R ) J o ( ~ o j ~ )  Jo(kr) = -- x 
R j =1 (p - aEj) Jl(aoj R)' 

it follows that, for 1x1 = h, 

It is also easy to show that 

I n  order to satisfy (A5) for all r in the range 0 < r < R it is essential that the 
coefficients of JO(aOjr) on either side of the equation are the same. It therefore 

with gij denoting the integral occurring in (A 6). This determines the following 
set of linear equations for the coefficients goi: 

(A 7) O3 cot x - Jl(a,iR) = 0,  
i=l  "oi 

which follows immediately from (A 4), together with 

wi th j=1 ,2 ,  .... 
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If we now write p = 27rT/KEgh, v = 47~SplKE& a = kh, a = R/h and 
yi = aOiJ,(aoiR) coi and let & (i = 1 , 2 ,  ...) denote the roots of Jo(<) = 0, equation 
(A 8) reduces to the dimensionless form 

where 

W x C i j q - p &  = va/f;q (i = 1 , 2 , 3 ,  ...), 
j=1 

Equation (A 7) reduces to 
W x (&)-2& = 0. 

i=l 

Our problem is therefore to find the largest (positive) value pmax of p which is 
such that the inhomogeneous system of linear equations 

(C -1.1) Y = vaA (A 12) 

A . Y  = 0, (A 13) 

has a solution subject to the constraint 

where C = {Cij), I = (S,j}, A = (Er2, &', . . .)T 
and Y = (Yl, Y,, . . .)T. 

If we assume that the solution of (A 12) and (A 13) can be regarded as the limit 
of the solution of the corresponding finite n x n system of equations as n+ 00, we 
can proceed to determine p,,, in the following way. Because C is real and sym- 
metric, it has, when truncated to an n x n matrix, n real and distinct eigenvalues 
Al,A,, ..., A,, which we shall suppose are such that A, > A, > ... > A,. If the 
corresponding orthonormal eigenvectors are ul, u,, , . . , u,, the solution Y may be 
written as 

Thus (A 12) gives 
Y = y/1u1+y2u2+ ... +ynun. 

x (A,-p)y,u, = vaA, 

(Ai - p )  yi = vaA . ul, 

n 

i=l 
which implies that 

and because of the constraint (A 13) 

n (A.u,), x-- - 0. 
i=l A,-p 

It is easy to show that (A 14)  has n-  1 roots which interlace the eigenvalues 
A,, A,, . .., A,. Thus the largest root of (A 14)  will be less than the largest eigenvalue 
of C when truncated to order n. 

The (approximate) value of ,urnax for a given value of a was found by solving 
(A 14) for increasing values of n until agreement to at least three significant figures 
was achieved with two successive values ofn. In  practice we found that over the 
range of values of a considered, namely 0-1 < a < 8.0, the value of n did not need 
to exceed n = 6 in order to obtain the desired accuracy. In  table 1 we list the values 
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a 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 

P- 
0.00925 
0.0185 
0.0370 
0.0555 
0.0741 
0.0927 
0.190 
0.447 
0.836 
1.371 

TABLE 1 

a, 
0.0121 
0.0242 
0-0485 
0-0728 
0.0973 
0.122 
0.262 
0.694 
1.382 
2-339 

ru* 
0.00974 
0.0195 
0-0389 
0.0584 
0.0779 
0.0974 
0.197 
0.454 
0.842 
1-376 

of ,urnax over this range of values of a. The quantity with which ,urnax must be com- 
pared is the value of Amax calculated in MONZ for the 8 1  sausage mode, and it 
will be seen from the table that A,,, exceeds p,,, throughout the range of a, 
thus indicating that the 81 sausage mode considered in MONZ becomes unstable 
a t  a lower field strength than does the SO sausage mode considered in this paper. 
For completeness we have also displayed in the table the value of ,u* which for 
a given value of a represents the value of ,u corresponding to pmax derived from 
the simple model discussed earlier when the conditions of continuity of the 
potential and the normal component of the displacement vector at  v = R are not 
satisfied. From (A 3), the expression for p* is accordingly given by 

Y * = (a/%) 00th ( C 1 / 4  9 

2J1(6) - CJ&) = 0. 

(A 15) 
where cl M 5 1 3 6  is the smallest non-zero root of 

The method of determining the eigenvalues of C is described in MONZ and 
will not be repeated here except to say that the size of the truncated n x n matrix 
is now determined such that pmax is evaluated correct to at  least three significant 
figures. 

The foregoing analysis has shown that the SO axisymmetric sausage mode of 
disturbance, though physically possible when there is a change of 8p in the static 
pressure when the equilibrium of the system is perturbed, is not the most unstable 
mode. However it is of interest to consider also why it is that, when 8p is non-zero, 
such a variation in the stability analysis is appropriate only for the axisymmetric 
sausage mode. Asymmetric modes, both of the sausage and kink types, can be 
ruled out because d’p cannot takeonasinmb or cos me variation, since it is a t  most 
a constant for a static disturbance. It therefore only remains for us to consider 
whether or not an axisymmetric kink mode has any significance in the stabiIity 
analysis. In  the simple model for the perturbation, the form of x for an axisym- 
metric kink mode corresponding to (A 1) has a second term which is a constant, 
and this term therefore contributes nothing to the electrical surface stress. 
Consequently, since Sp can be a t  most a constant, it follows that Sp = 0. Further- 
more, in the exact model, we note that if we suppose that 8p =+ 0 we are led to 
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a system of linear equations analogous to  (AS) but without the constraint 
equivalent to (A4), since in a kink mode disturbance the volume conservation 
condition is automatically satisfied. Thus no criterion for stability can be deduced 
when Sp 9 0. When Sp = 0 the analysis of the axisymmetric kink mode given 
in MONZ is complete. 

The work described in this appendix was completed while one of the authors 
(M. E. O’N.) was visiting the Department of Mathematics, University of Toronto, 
during which time he was supported by a grant from the National Research 
Council of Canada. 
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